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I. INTRODUCTION

Quantum graphs consist of a quantum particle moving on
a quasi-one-dimensional network. In the limit �=0, quantum
networks produce a nonintegrable classical counterpart—a
classical particle moving on the same network, scattering
randomly on its vertices �1,2�. As shown in �3�, this stochas-
tic dynamics is characterized by an exponential proliferation
of periodic orbits, positive Kolmogorov entropy, and other
familiar features of finite-dimensional deterministic chaotic
systems.

Such classical nonintegrability is clearly manifested in the
quantum regime. Quantum networks provide excellent illus-
trations to many general concepts, phenomenological hy-
potheses, and mathematical constructions of quantum chaol-
ogy. For example, extensive numerical �2,4,5� and analytical
�6–12� studies have demonstrated that the statistics of the
nearest neighbor spacing distribution, the two-point autocor-
relation function, the form factor, and the spectral rigidity of
the quantum graph spectra are close to the ones predicted
by the random matrix theory �RMT�. Since the latter three
statistics can be expressed in terms of the spectral density
functional, they were also studied analytically in terms
of the Gutzwiller periodic orbit series expansion
�5,13,7–9,14,10–12,15�.

Due to the relatively simple structure of the network dy-
namics, the results of the periodic orbit theory analysis of
quantum graphs are particularly complete. Moreover, peri-
odic orbit expansions, which usually have semiclassical ac-
curacy, are exact for the quantum networks and can be
viewed as mathematical theorems. In addition, as was shown
recently in �16–18�, the periodic orbit theory for quantum
graphs can describe not only the global characteristics of the
spectrum �e.g., the density of states, spectral staircase, quan-
tum and classical dynamical � functions, etc.�, but also the
individual eigenvalues of the energy or the momentum.

This fact provides an interesting opportunity to study sev-
eral additional statistical distributions, including those that
are not directly accessible via the Gutzwiller expansion for
the density of states, such as the distribution of the eigen-

value fluctuations around the average, �n=kn− k̄n, the nearest

neighbor spacings sn=kn−kn−1, etc., which are the main sub-
ject of this paper.

The paper is organized as follows. Section II reviews the
spectral hierarchy method �18�. Section III discusses the sta-
tistical spectral distributions for regular quantum graphs,
which are later generalized for irregular graphs in Secs. IV
and V. A short discussion of certain statistical universality
aspects of the resulting distributions is given in the Sec. VI.

II. SPECTRAL HIERARCHY FOR
QUANTUM NETWORKS

The idea of producing the individual momentum eigen-

values kn� k̂n
�0� is based on using the periodic orbit expansion

for the density of states,

��0��k� � �
n=1

�

��k − k̂n
�0�� , �1�

and an auxiliary sequence k̂n
�1�, which separates the spectral

points from one another:

k̂n−1
�1� � k̂n

�0� � k̂n
�1�, n = 1,… . �2�

From these two constituents one can obtain the quantum en-
ergy levels via

k̂n
�0� = �

k̂n−1
�1�

k̂n
�1�

��0��k�k dk . �3�

If any sequence with the property �2� is known as a global

function of n, k̂n
�1�= k̂�1��n�, the relationship �2� produces an

explicit solution to the spectral problem,

kn = k̂n
�0� = k̂�0��n� . �4�

The explicit integration in �3� is possible due to the exact
periodic orbit expansion for the density of states. As shown
in �1,2,19�, the exact expansion for ��0��k� has the form

��0��k� =
L0

�
+

1

�
Re �

p

Lp
�0�Ap

�0�eiLp
�0�k, �5�

where Lp
�0� and Ap

�0� are, respectively, the action length and
the weight factor of the periodic orbit p, and L0 is the total*Email address: yura@phy.ucsf.edu
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action length of the network. For scaling quantum graphs the
weight coefficients Ap

�0� are k independent.
Effectively, obtaining the spectral points as a function of

their index is equivalent to “inverting” the spectral staircase
function,

N�k� = �
i

��k − ki� , �6�

i.e., passing from N�kn�=n to k�n�=N−1�n�. Geometrically,
finding an auxiliary sequence that singles out separate peaks
in �1� amounts to finding a suitable monotone function f�k�
whose graph intersects every stair step of the spectral stair-

case. As it is illustrated in Fig. 1, the intersection points k̂n
�1�,

f�k̂n
�1�� = N�k̂n

�1�� = n , �7�

clearly satisfy the condition �2�, so solving Eq. �7� would

yield the whole sequence k̂n
�1� as a single globally defined

function of the index n. It is well known, however, that fol-
lowing the behavior of the spectral staircase function �6� in
such detail is generally a difficult task �see, e.g., �20��. Luck-
ily, quantum graphs allow an alternative approach, �16–18�,
which is based on certain properties of their spectral deter-
minant.

As shown in �2,16–18�, the spectral determinant 	�k� for
quantum graphs is a finite-order exponential sum,

	�k� = 1 + ei2�L0k−�
0� − �
i=1

N�

aie
i2�Lik−�
i�, �8�

with constant ai, Li�L0, and 
i. The order N� of the sum
depends on the topology of the graph �. The explicit form
�8� can be obtained by imposing boundary conditions on the
wave function of the quantum particle moving on the net-
work, e.g., by using scattering quantization �2,16� or the
Bogomolny transfer operator �21�. The roots of 	�k� define

the quantum spectrum of the momentum, 	�k̂n
�0��=0.

There are three key properties of the spectral determinant
	�k� relevant for the following discussion. First, its roots as
well as the roots of all of its derivatives are real �22,23�.

Second, there is exactly one root of its jth derivative,
	�j��k�, between every two neighboring roots of 	�j+1��k�.
This implies that the zero of 	�k� are interlaced by the zero
of 	��k�, as required by �2�, which in turn are interlaced by
the zero of 	��k�, and so on �22,23�. Lastly, as shown in �18�,
the higher the order of the derivative, the more orderly is the
behavior of the roots of 	�j��kn

�j��=0 �Fig. 2�. In fact, for any
quantum graph system, there exists a finite integer r �called
the regularity degree of the graph in �18�; see also �24�� such
that the roots of 	�r��k� can be interlaced by a periodic se-
quence of points

k̂n
�r+1� =

�

L0
�n +

1

2
	 . �9�

According to the criterion used in �16–18�, the regularity
degree r is the minimal integer for which the inequality

�
i

ai� Li

L0
	r
 � 1 �10�

holds. Since �Li /L0��1, this criterion allows us to find a
finite regularity degree for every quantum graph system us-
ing the coefficients of the spectral determinant �8�. Hence,

there exist r+1 almost periodic sequences of interest, k̂n
�j�, j

=0, . . . ,r, such that

	�j��k̂n
�j�� = 0 �11�

and

k̂n−1
�j� � k̂n

�j−1� � k̂n
�j�. �12�

The density functional for the jth sequence,

��j��k� = �
n

��k − k̂n
�j�� , �13�

allows one to pinpoint the exact location of k̂n
�j−1� on the

interval between k̂n
�j� and k̂n−1

�j� ,

k
^
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k
^(0)

n+1

k^(1)
nk^

(1)

n−1 k^
(1)
n+1 k^(1)

2n+

N(k)

f(k)

k

N

FIG. 1. �Color online� Continuous function f�k� that pierces
every stair step of the spectral staircase N�k� of a four-vertex linear

chain graph. The intersection points k̂n
�1� separate the momentum

eigenvalues k̂n
�0�.
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FIG. 2. �Color online� Histogram of the fluctuations of the roots
of the six-star graph of irregularity degree 5 and of the following
five separating sequences �n

�0� , . . . ,�n
�5�. The initial spread of the

fluctuations �n
�0� becomes progressively narrower for higher values

of j.
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k̂n
�j−1� = �

k̂n−1
�j�

k̂n
�j�

��j−1��k�k dk , �14�

for j=r+1,r−1, . . . ,1 and n=1, . . .. Since the roots of each
	�j��k� form an almost periodic set �23� the density func-
tional of each of the sequences kn

�j� can be expanded into an
explicit harmonic series, which allows one to evaluate the
integral �14� explicitly for every n and j.

The strategy that allows obtaining the separating se-

quences k̂n
�j� and eventually getting the physical spectral se-

quence k̂n
�0� follows directly from the bootstrapping �i.e., in-

terlacing� property of the sequences �12� and the relationship

�14�. One first finds the sequence k̂n
�r� starting from the peri-

odic separators �9�, then uses it to find k̂n
�r−1�, and so on. After

r steps of moving up the hierarchy, the spectrum k̂n
�0� is pro-

duced �18�.
Geometrically, this algorithm can be illustrated using the

integrated densities

N�j��k� = �
n

��k − k̂n
�j�� . �15�

The separating property of the jth sequence k̂n
�j� with respect

to the sequence k̂n
�j−1� implies that the staircase N�1��k� boot-

straps the staircase N�0��k�, whereas N�2��k� bootstraps
N�1��k�, and so on �see Fig. 3 and compare to Fig. 1�. The
final staircase N�r��k� is pierced by Weyl’s average

N̄�k� =
L0

�
k −

1

2
. �16�

In the simplest case of r=0, the spectral points themselves
can be separated from one another by the periodic sequence
�9�. Geometrically, this implies that Weyl’s average pierces
every stair step of the original N�k�, which guarantees the
existence of the periodic separators �9�. Such networks were
referred to as the “regular graphs” in �16–18�. The result of

integration �3� in this case produces the quantum eigenvalues
in the form of a periodic orbit series,

kn =
�

L0
n −

2

L0
�

p

Ap
�0�

�p
�0� sin��p

�0�

2
	sin��p

�0�n� , �17�

where �p
�0�=�Lp

�0� /L0. The first term in �17� gives the average

behavior of the eigenvalue sequence k̄n=�n /L0, and the sub-
sequent periodic orbit sum describes zero-mean fluctuations
of the kn’s around the average. It will be more convenient to
describe the fluctuations in terms of the quantity �n

�0�=L0�k
− k̄n� /�, n=1,2 , . . .,

�n
�0� = −

2

�
�

p

Ap
�0�

�p
�0� sin��p

�0�

2
	sin��p

�0�n� . �18�

As demonstrated in �16–18�, if the sum �17� includes only
the orbits that involve a certain fixed number m of scatterings
at the vertices of the graph, it produces the mth-order ap-
proximation to the exact value of kn for each n.

III. EIGENVALUE DISTRIBUTION
FOR REGULAR GRAPHS

Let us first study the spectral fluctuation statistics for
regular graphs based on the expansion �17�. The transition to
a statistical description of the sequence �n

�0�, n=1,2 , . . ., can
be made based on the properties of the sequence of the re-
mainders,

xn = �n�mod1, n = 1,2, . . . , �19�

It is a well-known number-theoretic result �25,26� that the
sequence �19� is uniformly distributed over the interval xn
� �0,1� for any irrational number .

For every periodic orbit p in �18�, the frequency �p
�0� is

defined as

�p
�0� = mp,1

�0��1 + ¯ + mp,NB

�0� �NB
= �m� p

�0�,�� p� , �20�

where �i=�li /L0 are the “bond frequencies” defined by the
bond lengths li, �i�i=1, and the vector m� p

�0�

= �mp,1
�0� , . . . ,mp,NB

�0� � gives the number of times the orbit p

passes over the bond i. Considering that for every �p
�0� the

function sin��p
�0�n� can be reduced to a combination of basic

harmonics of �in, one concludes that, in the generic case in
which every li /L0 is an irrational number, the phases

xi,n = ��in�mod2� �21�

in each term in �20� will generate random outputs, uniformly
distributed in the interval �0,2��. Hence, in the context of
studying the statistical properties of the eigenvalue sequence,
the argument of every factor sin��p

�0�n� in �17� can be treated
as a function

sin��p
�0�n� → sin�mp,1

�0�x1 + ¯ + mp,NB

�0� xNB
� = sin�m� p

�0�x��

�22�

of NB−1 independent random variables xi, which are distrib-
uted in the interval �0,2��. Hence, the set of deviations of

N (k)(j)

k

110
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100
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96
315 320 325 330 335310

FIG. 3. �Color online� Bootstrapping of the spectral staircase
�dotted line� by the N�1� staircase �dash-dotted line�, bootstrapped in
turn by the N�2� staircase �solid line� intersected by the Weyl aver-
age �straight line�. Note that the N�2� staircase does not bootstrap the
N�0�. These graphs were obtained for the dressed four-vertex linear
chain graph �18�.
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the eigenvalues from the average is statistically described by
a series of random inputs corresponding to the periodic orbit
expansion �18�

�x
�0� = −

2

�
�

p

Ap
�0�

�p
�0� sin��p

�0�

2
	sin�m� p

�0�x�� . �23�

The maximal amplitude of an input corresponding to a peri-
odic orbit p coincides with the amplitude of the same orbit’s
contribution into the exact periodic orbit sum �17�.

It is now a straightforward task to obtain the distribution
of �n

�0� via

P�
�0����0�� = �

0

2�

¯ �
0

2�

����0� + �
p

Cp
�0� sin�m� p

�0�x��	 
i=1

NB−1
dxi

2�
,

�24�

where

Cp
�0� =

2

�

Ap
�0�

�p
�0� sin��p

�0�

2
	 . �25�

Using the exponential representation of the � functional, one
has

P�
�0����0�� =� dk eik��0�

F�
�0��k,Cp

�0�� , �26�

where the characteristic function F�
�0��k ,Cp

�0�� is defined ex-
plicitly via the periodic orbits and graph parameters,

F�
�0��k,Cp

�0�� = �
0

2�

¯ �
0

2�

exp�ik�
p

Cp
�0� sin�m� p

�0�x��	
� 

i=1

NB−1
dxi

2�
. �27�

As in the case of the series expansion for kn, a finite-
�mth-�order correction to the exact result is obtained by con-
sidering the orbits that involve the same number �mp

�0��
=mp,1

�0� + . . . +mp,NB

�0� of vertex scatterings.
In general, the statistical properties of a spectral quantity

zn that has a periodic orbit series expansion

zn
�0� = fz

�0� − �
p

cp
�0� cos��p

�0�n + �p
�0�� , �28�

where �p
�0� is an n-independent phase and fz

�0� is a shift term
�see below�, are described by the random sequence

zx
�0� = fz

�0� − �
p

cp
�0� cos�m� p

�0�x� + �p
�0�� . �29�

The corresponding characteristic function of probability dis-
tribution for z will have the form

Fz
�0��k� = �

0

2�

¯ �
0

2�

exp�ik�
p

cp
�0� cos�m� p

�0�x� + �p
�0��	dx ,

�30�

where dx=i=1
NB−1�dxi /2��.

Another case of spectral characteristics that can be treated
by this approach is provided, e.g., by the separation between
two eigenvalues kn+m and kn for a fixed m. This quantity is
defined by the expansion

sn,m
�0� =

�

L0
m − �

p

Dp,m
�0� cos��p

�0�n + �p
�0�m

2
	 �31�

with

Dp,m
�0� =

4

L0

Ap
�0�

�p
�0� sin��p

�0�

2
	sin��p

�0�m

2
	 , �32�

which gives rise to the random series

sm,x
�0� =

�m

L0
− �

p

Dp
�0� cos�m� p

�0�x� −
m�p

�0�

2
	 . �33�

The distribution of sm
�0� can be obtained as

Psm

�0��s� =� dk eik�s−�m/L0�Fsm

�0��k,Dp,m
�0� � , �34�

where Fsm

�0��k ,Dp,m
�0� � is defined according to �30�. In the case

m=1, these formulas describe the nearest neighbor distribu-
tion. Clearly, for the difference between the fluctuations
themselves, �n,m

�0� =�n+m−�n, the distribution is P�m

�0����
= Psm

�0��s+�m /L0�.
One could also study the mean of the two neighboring

deviations, �n
�0�= ��n

�0�+�n−1
�0� � /2. This characteristic can be

used to generate the separators directly from kn
�0�, kn

�1�=n
+�n

�0�, independently of the properties of the spectral deter-
minant. The corresponding series has the expansion coeffi-
cients

Ep
�0� =

1

�

Ap
�0�

�p
�0� sin��p

�0�� �35�

and phases �p
�0�=� /2−�p

�0� /2. The energy fluctuations �En
have the expansion coefficients

Hp
�0� =

2�

L0
2

Ap
�0�

�p
�0�� 2

�p
�0� sin��p

�0�

2
	 − cos

�p
�0�

2
� , �36�

phases �p
�0�=0, and fE=�2 /12L0

2, etc.
These quantities can be used to find the periodic orbit

expansions for higher-order statistics, such as the correlator
��n

�0��n+m
�0� � or the autocorrelation function

R2�x� =
�2

L0
2���k +

x

2
	��k −

x

2
	�

=
�

L0
lim
N→�

1

N�
n=1

N

�
m�0

��kn+m − kn + x� , �37�

which defines the probability to find a new level at a distance
x�0 from a given old one, whether or not these levels are
nearest neighbors. The Fourier image of R2�x�, the form fac-
tor K2��� is given by
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K2��� =
�

L0
lim
N→�

1

N�
n=1

N

�
m=1

N

ei�kn+m−kn�� =
�

L0
��

m

e−i�kn+m−kn���
n

.

�38�

For the regular graphs with kn given by �17�, the averaging
over n can be performed via

K2��� =
�

L0
lim
N→�

1

N�
n=1

N

�
m

exp i�−
�

L0
m + �

p

Dp,m
�0�

�cos��p
�0��n +

m

2
	���

=
�

L0
�
m

exp�− i
�m

L0
�	

�� exp�i�
p

�Dp,m
�0� cos�m� p

�0�x� + �p
�0�m

2
	�

i

dxi

2�
.

�39�

The latter integral is defined by �34�, so

K2��� =
�

L0
�
m=1

�

e−i��m/L0��Fsm

�0���,Dp,m
�0� � . �40�

Formula �40� can also be obtained directly from �38� by av-
eraging over the random variable sm

�0� using the distribution
�34�,

K2��� =
�

L0
��

m

e−i�kn+m−kn���
n

=
�

L0
�
m

�e−ism
�0���sm

.

Hence R2�x� is given by

R2�x� =
�

L0
�
m
� ei��x−�m/L0�Fsm

�0���,Dp,m
�0� �d� =

�

L0
�
m

Psm

�0��x�

�41�

as the sum of the probabilities that the two eigenvalues sepa-
rated by the interval x have m−1 other eigenvalues in be-
tween.

It should be emphasized that all the probability distribu-
tions above are obtained in the context of the standard peri-
odic orbit theory framework. All the distributions for the
regular level fluctuations derived in this section are closed,
self-contained expressions, defined in terms of the periodic
orbits and graph parameters. It is also important to notice
that the statistical properties of some �especially some regu-
lar� quantum graphs, despite being strongly stochastic in the
classical regime, deviate from the universal Wignerian distri-
butions predicted by the RMT. However, these cases, as well
as the irregular graphs discussed below, are equally well de-
scribed via statistical description of the periodic orbit expan-
sion series for the spectral sequences.

IV. SPECTRAL EXPANSIONS FOR IRREGULAR GRAPHS

As mentioned in Sec. II, one can find the roots of

	�j−1��k� by using the density ��j��k� and the separators k̂n
�j� in

formula �14�, which yields

k̂n
�j−1� = k̂n

�j�N�j−1��k̂n
�j�� − k̂n−1

�j� N�j−1��k̂n−1
�j� � − �

k̂n−1
�j�

k̂n
�j�

N�j−1��k�dk .

�42�

Every staircase function N�j��k� can be decomposed into an

average and an oscillating part, N�j��k�= N̄�j��k�+�N�j��k�,
where the average integrated density for every j is

N̄�j��k� =
L0

�
k −

1

2
= N̄�k� . �43�

The bootstrapping �12� of k̂n
�j−1� by k̂n

�j� �or N�j−1��k� by
N�j��k�; see Fig. 3� implies that

N�j−1��k̂n
�j�� = n . �44�

Using �43� and �44� and writing k̂n
�j� in the form

k̂n
�j� =

�

L0
�n + �n

�j�� , �45�

we get for the j−1 generation of the separators

k̂n
�j−1� =

�n

L0
+

1

2

�

L0
��n

�j� − �n−1
�j� � −

1

2

�

L0
���n

�j��2 − ��n−1
�j� �2�

− �
k̂n−1

�j�

k̂n
�j�

�N�j−1��k�dk . �46�

The harmonic series expansion for �N�j��k�,

�N�j��k� =
1

�
Im �

p

Ap
�j�eiLp

�j�k, �47�

allows one to compute the integral in �48� explicitly, which

yields the fluctuating part of k̂n
�j−1� via an expansion similar to

�18�,

�n
�j−1� = f�

�j−1���n
�j�,�n−1

�j� � − �
p

Cp
�j−1���n

�j�,�n−1
�j� �

�sin��p
�j−1�n + �p

�j−1���n
�j�,�n−1

�j� �� , �48�

where now the expansion coefficients

Cp
�j−1� =

2

�

Ap
�j−1�

�p
�j−1� sin

�p
�j−1�

2
��n

�j� − �n−1
�j� + 1� , �49�

the “zero-shift” term

f�
�j−1� =

1

2
��n

�j� − �n−1
�j� � −

1

2
���n

�j��2 − ��n−1
�j� �2� , �50�

and the phases

�p
�j−1� =

�n
�j� + �n−1

�j� − 1

2
�p

�j−1� �51�

are functions of the fluctuations �n
�j� and �n−1

�j� on the previous
level of the hierarchy. In the particular case when r=0, �n

�1�

=�n−1
�1� =1/2, �48� coincides with the oscillating part of �17�.
Equation �48� shows that the fluctuations �n

�j−1� have two
sources. In addition to the oscillations induced by the peri-
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odic orbit sum in �48�, there are also oscillating contributions
produced by �n

�j� and �n−1
�j� that bring in the oscillations from

all the previous levels of the hierarchy. This equation will
later be used to produce the exact statistical distribution for
the fluctuations �n

�j� at each level of the hierarchy.
As an example of a case where the coefficients Ap

�j� can be
obtained directly, one can use the simple example of a two-
bond regular graph, discussed in �16,17�. Although the two-
bond graph is a strictly regular system, which does not re-
quire auxiliary separating sequences for obtaining its
spectrum, it is nevertheless useful to use this case to have an
immediate illustration of the explicit form of the coefficients
Ap

�j�.
As shown in �16,17,19�, the spectral equation in this case

has the form

sin��l1 + l2�k� − r sin��l1 − l2�k� = 0, �52�

where r is the reflection coefficient at the middle vertex and
l1 and l2 are the two bond lengths. This equation was ob-
tained in �16,17,19� using the scattering quantization method
�1,2� as 	�k�=det�1−S�k��=0, where the scattering matrix
S�k��S�0��k� in this case is

S�0��k� =�
0 − eil1k 0 0

reil1k 0 0 teil2k

teil1k 0 0 − reil2k

0 0 − eil2k 0
� . �53�

The unitarity of S�k� is guaranteed by the “flux conservation”
relationship between the reflection and transmission coeffi-
cients, t2+r2=1. The expansion of the spectral determinant
�1,2,16� yields the exact periodic orbit expansion for N�k�,

N�k� = N̄�k� −
1

�
Im �

p,�

1

�
��− 1���p�t2��p�r��p���ei�Lpk,

�54�

where � is the multiple traversal index for the prime periodic
trajectory p, ��p� and 2��p� are the numbers of reflections
and transmissions for p at the middle vertex, and the factor
�−1���p� defines the Maslov index �19�. The action length of
p is Lp=mp,1l1+mp,2l2, according to the number of times mp,1
and mp,2 it traverses the bonds l1 and l2. One can notice that

the equation for the separating points k̂n
�1�,

cos��l1 + l2�k� − r� cos��l1 − l2�k� = 0, �55�

where �= �l1− l2� / �l1+ l2��1, reduces to the original equa-
tion �52�, if r→r�1�=�r and l1k→ l1k+� /2. Therefore, the
expansion for N�1��k� can be obtained from det�1−S�1��k��,
where the unitary matrix S�1��k� is obtained via a two-
parameter deformation of the unitary matrix S�0��k�,

S�1� =�
0 − eil1k+�/2 0 0

r�1�eil1k+�/2 0 0 t�1�eil2k

t�1�eil1+�/2 0 0 − r�1�eil2k

0 0 − eil2k 0
�

�56�

with r�1�=�r and t�1�=�1− �r�1��2. The weight coefficients
Ap

�1� are now explicitly defined via the products of the matrix
elements of S�1��k�, just as the Ap

�0� coefficients were defined
via S�0��k� in �54�.

Clearly, all even order derivatives of the spectral equation
�52� for j=2w have the form sin��l1+ l2�k�−r�2w sin��l1

− l2�k�=0, so with the replacement r�2w�=��2w�r, t�2w�

=�1− �r�2w��2, the form of the coefficients Ap
�2w� is structur-

ally the same as the one found in �54�. The odd degree de-
rivatives Ap

�2w+1� are produced by the expansion of the deter-
minant det�1−S�2w+1��k�� analogous to �56�. It should be
mentioned, however, that in general the task of obtaining the
exact form of the coefficients Ap

�j� and frequencies �p
�j� for j

�0 is not as straightforward as in this simple case and re-
quires a more detailed analysis. In particular, harmonic ex-
pansions such as �48� may include bond combinations that
do not correspond to connected periodic orbits.

Using the expansion for the fluctuations �n
�j−1�, one can

find the harmonic expansions for other spectral characteris-
tics. For example, for the m-neighbor difference sn,m

�j−1�=m
+�n+m

�j−1�−�n
�j−1�, the expansion is

sn,m
�j−1� = fs

�j−1��sn−1,m
�j� ,sn,m

�j� ,sn,m−1
�j� ,�n

�j��

+ �
p

Dp,m
�j−1� cos�n�p

�j−1� + �p
�j−1�� , �57�

where

fs
�j−1� = sn,m

�j� +
1

2
�sn,m

�j� − sn,m−1
�j� ��2m − sn,m

�j� − sn−1,m
�j� �

+ �n
�j��sn−1,m

�j� − sn,m
�j� � �58�

and �n
�j�= 1

2 ��n
�j�+�n−1

�j� �. The harmonic expansion coefficients
in this case are

Dp,m
�j−1� =

Ap
�j−1�

�p
�j−1��sin2 �p

�j−1�

2
sn,m

�j� + sin2�p
�j−1�

2
sn−1,m

�j�

− 2�sin
�p

�j−1�

2
sn,m

�j� sin
�p

�j−1�

2
sn−1,m

�j� 	
�cos

�p
�j−1�

2
�2sn,m−1

�j� − sn,m
�j� − sn−1,m

�j� ��1/2

. �59�

In the case m=1 the system of equations �57� yields the
nearest neighbor distances between the j−1 level separators.

The nearest neighbor average �n
�j� that appears, e.g., in

�59� has the expansion
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�n
�j−1� = f�

�j−1��sn
�j�,sn−1

�j� ,�n
�j�� − �

p

Ep
�j−1��sn

�j�,sn−1
�j� �

�sin��p
�j−1�n + �p

�j−1�� , �60�

where

f�
�j−1� = −

1

4

L0
2

�2�sn
�j� + sn−1

�j� −
2�

L0
	�sn

�j� −
2�

L0
+

2�

L0
�n−1

�j� 	 ,

Ep
�j−1� =

1

L0

Ap
�j−1�

�p
�j−1� sin

Lp
�j−1�

2
�sn

�j� + sn−1
�j� � ,

��,p
�j−1� = �L0

2
sn

�j� + �n−1
�j� −

3

2
	�p

�j−1�.

Expansions of the kind �48�, �57�, and �60� provide an exact
description of the propagation of the spectral characteristics
across the hierarchy in terms of the geometry of the graph.
For graphs of high degree of irregularity, Eqs. �48�, �57�, and
�60�, etc., can be considered as discretizations of nonlinear
differential equations for continuous functions �n

�j����n , j�,
sn,m

�j� �sm�n , j�, �n
�j����n , j�, etc.

V. FLUCTUATION STATISTICS

As demonstrated in the previous section, the fluctuations
zn

�j� �e.g., �48�, �57�, and �60�� at the jth level of the hierarchy
depend on the fluctuations on all the previous levels as well
as on the oscillations introduced by the harmonic terms at the
level j,

zn
�j−1� = f �j−1��zn

�j�� − �
p

cp
�j−1��zn

�j��cos��p
�j−1�n + �p

�j−1��zn
�j��� .

�61�

As in the regular case considered in Sec. III, a probabilistic
description of the sequence z�j� at each j is obtained by con-
sidering z�j� as a function of a random vector x�, generated by
the sequence xi= ��in�mod 2�,

zx
�j−1� = f �j−1��zx

�j�� − �
p

cp
�j−1��zx

�j��cos�m� p
�j−1�x� + �p

�j−1��zx
�j��� .

�62�

Since the index n and the bond frequencies �i are the same
for all the zn

�j� expansions across the hierarchy, the random
variable x� is the same in all the harmonic expansion terms in
the stochastic series �62�, j=0, . . . ,r. This implies, however,
that, unlike the regular case, the harmonic oscillations at the
higher levels of the hierarchy �j�r� are not the only source
of randomness in the series �62�. Additional “noise” at the
level j is injected into Eq. �62� by the variables zx

�j�, which
introduce the fluctuations from all the previous levels of the
hierarchy into its j−1 level. The expansions �62� allow one
to obtain the probability distributions for each of the z�j�’s
from

Pz
�j−1��z�j−1�� =� �„z�j−1� − z�j−1��zx

�j�
„zx

�j+1��¯�,x…,x�…dx ,

�63�

where dx=i�dxi /2��. The nested structure of the zx
�j−1� in

�63� can be unfolded in the form

Pz
�j−1��z�j−1�� =� �„z�j−1� − z�j−1��zx

�j�,x�…

� �„zi
�j� − zi

�j��zx
�j+1�,x�…

� ¯ � �„zi
�r� − zi

�r��x�…
j


i

zi
�j�dx ,

�64�

in which the chain of the � functionals above can be under-
stood as the conditional probability densities for obtaining
the value z�j−1�, given the values of x� and z�j�, z�j+1� , . . . ,z�r�.
Here the index i runs over the number of the elements zi

�j�

that appear in the expansion �61� of the corresponding quan-
tity z�j−1�. For example, the expansion of �n

�j−1� depends on
�n−1

�j� and �n
�j�, so in this case the index i takes two values, i

=1,2. In the following, this index will be omitted for con-
ciseness of the notation.

The hierarchical organization of the fluctuations suggests
a natural way of approximate evaluation of the expression
�64�. Since for every j the function zx

�j� is a complex, rapidly
oscillating function of x, and since every z�j−1� characteristic
depends explicitly only on the previous level sequence z�j�, it
is natural to consider a simple approximation to �64�, in
which z�j� in Eqs. �62� are treated as independent random
variables distributed according to Pz

�j�,

Pz
�j−1��z�j−1�� =� �„z�j−1� − z�j−1��z�j�,x�…Pz

�j�dz�j�dx .

�65�

A more formal and elaborate argument that will not be dis-
cussed here in detail is based on inverting the dependence
z�j−1�=z�j−1��x� for each j in the arguments of the � function-
als in �64� �i.e., in effect using the Bayes relationships
P�z �x�P�x�= P�x �z�P�z��. It is clear that, due to the complex
oscillatory behavior of the expansions z�j−1��x�, one can ap-
proximate each of the Pz

�j��x �z� distributions by a uniform
distribution, which effectively corresponds to introducing
separate x variables for each level j, and leaves, after inter-
mediate integrations, the distribution Pz

�j� in �65�.
This approach takes natural advantage of the hierarchical

organization of the fluctuations produced by the sequences
z�j�. Since the distribution Pz

�r� at the regular level can be
computed directly, the distribution Pz

�r−1�, Pz
�r−2� , . . . can be

computed in sequence, from the previous levels of the hier-
archy to the next. The final distributions Pz

�0� will apply to the
physical characteristics of the spectrum.

As an example, one can consider the transition from the
level j to the level j−1 of the distributions for the deviations
from the average. The jth-level fluctuations �n

�j� and �n−1
�j� in

�48� can now be considered as random variables �1 and �2,
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distributed according to P�
�j����. Hence, for the density

P�
�j−1���� one can write

P�
�j−1���� =� d�1d�2dx P�

�j���1�P�
�j���2���� − f�

�j−1���1
�j�,�2

�j��

+ �
p

Cp
�j−1���1

�j�,�2
�j��sin�m� p

�j−1�x� + �p
�j−1���1

�j�,�2
�j���� .

�66�

Exponentiation of the � function produces

P�j−1���� =� dk eik��F�
�j−1��k,Cp

�j−1�����j�, �67�

where the function

F�
�j−1��k� = �

0

2�

¯ �
0

2�

exp�ik�
p

Cp
�j−1���1,�2�

�sin�m� p
�j−1�x� + �p

�j−1��	dx , �68�

produced by the integral over the xi’s, is reminiscent of �27�.
The �� , � ���j� denote averaging of the F�

�j��k� with the weight

��j���1
�j�,�2

�j�,k� = e−ikf�
�j−1���1

�j�,�2
�j��P�

�j���1�P�
�j���2� , �69�

which corresponds to averaging over the “separator disor-
der,” which yields the characteristic function of the distribu-
tion �67�. If P�

�r+1�=����r+1�− 1
2

� �ordered separators at j=r�,
one recovers the regular level distribution �26�. For j�r,
obtaining the probability distributions P�

�j−1���� requires an
additional averaging over the disorder produced by the fluc-

tuating sequences of the separators k̂n
�j�.

The expressions for other spectral characteristics have
similar structure. In the case of the mth-neighbor separation
statistics, the probability distribution for sm

�j−1� is given by

Pm
�j−1��s� =� eik�s−m��Fsm

�j����j�dk , �70�

where the “characteristic exponential” Fsm

�j� generated by the

harmonic series �sx,m
�j−1� similarly to �68�, is averaged with the

weight

��j��s1,s2,s3,�� = e−ifs
�j−1��s1,s2,s3,��P�

�j����Psm

�j��s1�Psm

�j��s2�Psm

�j��s3� .

�71�

In the case of m=1, this yields the distributions for the near-
est neighbor spacings. The resulting distributions can be used
to compute the form factor K2

�j����, the autocorrelation func-
tion R2

�j��x�, and so on.

VI. TRIGONOMETRIC SUMS AND
SPECTRAL UNIVERSALITY

An important advantage of obtaining the statistical de-
scription of spectra in terms of the harmonic expansions is
that the well-known universality features of quantum chaotic

systems �e.g., �27,28�� can now be analyzed within the con-
text of the theory of trigonometric series and weakly depen-
dent random variables �see �29,30� and references therein�.
As shown e.g., in �31–38�, under certain conditions separate
terms of trigonometric �or more general �39�� series statisti-
cally behave as a set of weakly dependent random variables
�40�. This allows establishing analytically certain universal
features for the distribution of their sums, e.g., the corre-
sponding generalization of the central limit theorem.

It is well known �31–38� that, if the frequencies of the
trigonometric series

f�x� = �
k

ck cos�2�nkx + �k� �72�

increase sufficiently rapidly so that the “critical condition”

nk+1

nk
= 1 +

k

�k
, k → � , �73�

is satisfied, then a central limit theorem holds for the sum
�72�,

1

	K
�
k=1

K

ck cos�2�nkx + �k� → N0,1, �74�

where N0,1 is the standard normal distribution and 	K
2

= 1
2�k=1

K ck
2.

Although the series �72� is much simpler than the spectral
expansions studied in the context of the periodic orbit theory,
a similar result was previously observed in the physical lit-
erature. Based on extensive numerical simulations, it was
hypothesized in �28� that the fluctuations of the spectral stair-
case �N�k� of a generic quantum chaotic system are nor-
mally distributed with the standard deviation

	� =
1

2�
p

Ap
2, �75�

introduced in �28� via spectral rigidity, where the Ap’s are the
expansion coefficients �47� for �N�k�. In particular, this ap-
plies to the quantum graphs for which there exists an exact
periodic orbit expansion �47� for �N�k�. Although the fluc-
tuations of the quantum graph spectrum are finite �18�, their
distributions are typically well approximated by the Gaussian
distribution �see Fig. 2 and Fig. 5 below�, just as the finite
range Ps can approximated by the Wignerian distribution �2�
�see Fig. 4�.

The explicit expansions �29� and �62� allow us to extend
the scope of the hypothesis of the central limit theorem for
spectral fluctuations �28� a much wider range of spectral
characteristics. For example, the probability distributions of
the nearest neighbor average �n

�j−1�, shown in Fig. 5, which
can be obtained from �60� as

P�
�j−1���� =� dk eik��F�

�j���
�
�j� �76�

with the weight
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��
�j��s1,s2,�� = e−ikf�

�j−1��s1,s2,��P�
�j����Ps

�j��s1�Ps
�j��s2� , �77�

are also well approximated by a Gaussian distribution with
the corresponding variance.

It is important to mention that, although the condition �73�
is required for the general proof of the central limit theorem
�74�, �31–35,38�, in some cases it is possible to establish the
existence of limit distributions if �73� is violated �see, e.g.,
�37,41–43��. This is essential for periodic orbit expansions,
because the lacunarity condition �73� generally may not hold
for the prime periodic orbit spectrum of quantum graphs and
of more general systems. However, extensive numerical and
empirical evidence points to the existence of the correspond-
ing limiting distributions �28�.

There are many fewer proved results about the probabi-
listic behavior of multiple trigonometric series such as the
spectral expansions �29� or �62� �see �43–49� and the refer-
ences therein�, specifically regarding the conditions required
for convergence of their sums to the limiting distributions.

Nevertheless, the proposed connection to the spectral theory
clearly implies the existence of limiting distributions for
such expansions and points to the origins of spectral univer-
sality �27,28� from the perspective of the periodic orbit
theory �50–60�.

The nontrivial role of the transitions between the prob-
ability distributions at different levels of the hierarchy �such
as �67� or �70�� can be seen on the example of the develop-
ment of the nearest neighbor distributions �see Fig. 4�. Al-
though the distribution at the regular level has an overall
Gaussian shape, the profile of the distributions Ps

�j��s� for
j�0 becomes progressively closer to the Wignerian form.

VII. DISCUSSION

The method of obtaining explicit semiclassical expansions
for the individual spectral points outlined above is based on
the possibility of tying the sequence of momentum eigenval-

ues kn� k̂n
�0� to a certain base, regular sequence k̂n

�r+1�, defined
explicitly as a function of the index n. As shown in �19�, this
can be done either directly, as in the case of regular graphs,
where the periodic sequence �78� is used to place the points
kn into a system of periodic cells, or indirectly, as in case of

irregular graphs, where a few auxiliary sequences k̂n
�j� are

needed to complete the bootstrapping.

The system of auxiliary sequences k̂n
�j� that links the base

sequence k̂n
�r+1� and the physical spectral sequence k̂n

�0�

together with the rule of transition from the jth to the
�j−1�th level, defines the spectral hierarchy. The depth of the
hierarchy, i.e., the minimal number of auxiliary sequences
necessary to complete the bootstrapping, expresses the com-
plexity of the spectral problem with respect to a particular
bootstrapping method.

The spectral hierarchy used in �19� and in this paper is
based on using the sequences of the roots of the derivatives
of the spectral determinant and the base sequence

k̂n
�r+1� =

�

L0
�n +

1

2
	 . �78�

The index n�N that appears explicitly in �78� is then carried
to the 0th level via the rule �14�. This scheme allows one to
describe the exact evolution of the separating sequences kn

�j�

from the lower to the upper levels of the hierarchy, and to
pass on to a general probabilistic description of the spectral
characteristics, including the ones that are not accessible via
the Gutzwiller expansion for the density of states.

The organization of the spectral hierarchy allows one to
follow the accumulation of the fluctuations from the regular
�rth� to the physical �0th� level. Essentially, this method al-
lows one to unfold the full scale spectral fluctuations in
steps, by distributing the disorder across the intermediate
levels of the hierarchy, and by passing successively from
more orderly to more disordered sequences. While the start-
ing sequence is perfectly ordered �e.g., �78� is periodic�, ev-

ery other sequence k̂n
�j�, j�r+1, is disordered, and the scale

of the oscillations increases as one passes from level j to j
−1 �19�. The probability distributions at every level are ob-

(j)
sP

s

1

0.5

0
0 1 2 3 4 5 6−1

2.5

2

1.5

FIG. 4. �Color online� Histogram of the nearest neighbor sepa-
rations sn

�0� �bottom distribution�, sn
�1� and sn

�2� �top distribution� for
the fully connected quadrangle graph �top right corner� of irregu-
larity degree 3, obtained for 80 000 roots of the corresponding spec-
tral equations. The maximal nearest neighbor separation for j=0 in
this case is smax=8.68, while the regular cell size is � /S0=2.28.
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FIG. 5. �Color online� Histogram of the nearest neighbor aver-
age for the even levels of the hierarchy of the fully connected quad-
rangle graph of irregularity degree 7, obtained for 80 000 roots of
the corresponding spectral equations. The solid line in the back-
ground of each histogram represents a Gaussian fit with 	 given by
the corresponding sum �75�.
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tained by averaging over the fluctuations introduced by the
periodic orbits at that level, as well as over the disorder ��j�

inherited from the previous level of the hierarchy.
Spectral expansions may also provide a physical under-

standing of the origins of the spectral statistical universalities
based on the periodic orbit theory. It is well known that
under certain conditions �e.g., the lacunarity condition �73��,
separate terms or specially combined groups of terms of the
trigonometric series behave as weakly dependent random
variables �31,32�. This allows one to establish standard uni-
versal asymptotic distributions for their sums, in particular,
convergence to a Gaussian distribution with a certain specific
variance. Interestingly, the same variance was already con-
jectured for the universal probability distribution profile for
the �n

�0� fluctuations of a generic quantum chaotic system
�30�.

In addition, in the proposed approach, the propagation of
the fluctuations through the hierarchy and the buildup of the
distributions P�j� via the corresponding number of averagings

over the disordered sequences k̂n
�j� can lead to the appearance

of other universal �e.g., Wignerian� profiles, as is the case for
the nearest neighbor separation statistics �see Fig. 4�.

On the other hand, it is also important that this approach
does not overlook the individual features of a particular sys-
tem for the sake of broad universality, and can provide a
detailed description of the distributions that deviate from the
universal behavior �as in the case of the regular graphs�, as
well as the degree of such deviations.
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